Learning to play Go from scratch

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning to Play the Game of Go

The problem of creating a successful artificial intelligence game playing program for the game of Go represents an important milestone in the history of computer science, and provides an interesting domain for the development of both new and existing problem-solving methods. In particular, the problem of Go can be used as a benchmark for machine learning techniques. Most commercial Go playing p...

متن کامل

Learning to Align from Scratch

Unsupervised joint alignment of images has been demonstrated to improve performance on recognition tasks such as face verification. Such alignment reduces undesired variability due to factors such as pose, while only requiring weak supervision in the form of poorly aligned examples. However, prior work on unsupervised alignment of complex, real-world images has required the careful selection of...

متن کامل

Mastering the game of Go from scratch

In this report we pursue a transfer-learning inspired approach to learning to play the game of Go through pure self-play reinforcement learning. We train a policy network on a 5 ⇥ 5 Go board, and evaluate a mechanism for transferring this knowledge to a larger board size. Although our model did learn a few interesting strategies on the 5 ⇥ 5 board, it never achieved human level, and the transfe...

متن کامل

Learning to play Go using recursive neural networks

Go is an ancient board game that poses unique opportunities and challenges for artificial intelligence. Currently, there are no computer Go programs that can play at the level of a good human player. However, the emergence of large repositories of games is opening the door for new machine learning approaches to address this challenge. Here we develop a machine learning approach to Go, and relat...

متن کامل

Learning Face Representation from Scratch

Pushing by big data and deep convolutional neural network (CNN), the performance of face recognition is becoming comparable to human. Using private large scale training datasets, several groups achieve very high performance on LFW, i.e., 97% to 99%. While there are many open source implementations of CNN, none of large scale face dataset is publicly available. The current situation in the field...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature

سال: 2017

ISSN: 0028-0836,1476-4687

DOI: 10.1038/550336a